
Intelligent Logistics Car Based
on PID Control

Dikai Ye, Qiuran Zhao, Tianyou Wang, Jialang Yang, Yifan Feng, Yuxiang Peng

1South China University of Technology
2SHIEN-MING WU School of Intelligent Engineering

June 8, 2022

Abstract

I n order to meet the needs of engineering education and curriculum teaching reform, this
paper designs and studies the obstacle avoidance and automatic grasping functions of the
car based on Arduino MEGA2560. The automatic obstacle avoidance function is realized

by the radar system composed of ultrasonic sensor and reducer motor, and a 6-DOF manip-
ulator with Open MV or infrared sensor as module is designed. This paper introduces the
overall operation process of the system in detail, describes the ultrasonic obstacle avoidance,
the tracking PID control, the adjustment of the fixed position of the manipulator, the cases
of different recognition objects and the relevant program algorithms, summarizes the short-
comings and puts forward more effective improvement methods. In the process of obstacle
avoidance, we also designed two driving routes, and determined the better scheme according
to the time cost, program complexity and turning efficiency. In the process of placing objects,
we designed an intelligent push rod system with simple and efficient structure. The intelli-
gent car has passed the experimental test, and its function meets the basic needs of obstacle
avoidance, tracking, grasping and placing objects, which has a certain practical significance.

Keywords: Arduino, tracking, obstacle avoidance, ultrasonic sensor, 6-DOF Manipulator

Intelligent Logistics Car Based on PID Control

Contents

1 Introduction 3

2 Concept Design 3
2.1 Intelligent Car System . 4

2.1.1 Power module . 4
2.1.2 Motor, drive module and wheel . 5
2.1.3 Obstacle avoidance module . 6
2.1.4 Infrared tracking module . 7

2.2 Manipulator system . 8
2.2.1 Design scheme of manipulator . 8
2.2.2 Hardware circuit design . 9

3 Manufacturing 13
3.1 System principle . 13

3.1.1 Principle of obstacle avoidance . 13
3.1.2 Principle of tracking . 13
3.1.3 Kinematics analysis of manipulator . 13

3.2 System implementation . 14
3.2.1 Obstacle avoidance scheme design . 14
3.2.2 Tracking Algorithm and PID control . 15
3.2.3 Manipulator system parameter adjustment . 16
3.2.4 Grabbing object scheme design . 17
3.2.5 Dumping device . 18

3.3 System validation . 19
3.3.1 Obstacle avoidance . 19
3.3.2 Tracking . 20
3.3.3 Grabbing . 21
3.3.4 Unloading . 21

4 Cost Estimation 22

5 Conclusion 22

6 Nomenclature 23

7 Acknowledgements 23

A All sketches in concept design 25

B All engineering draws with SolidWorks 26

C Product Design Specifications 28

D Details of Prototyped machines 28

E Other related works 31
E.1 PID motor control (One motor example) . 31
E.2 PID tracking algorithm . 33

Page 2 of 37

Intelligent Logistics Car Based on PID Control

1 Introduction

At present, the general multi axis manipulator is combined with the machine vision module to realize
the function of target feature recognition and automatic handling. It is widely used in the handling
and sorting occasions of industrial automation production line, and effectively solves the problems of
excessive workload and increasing labor cost in manual sorting and handling. Moreover, the identifica-
tion and extraction of target information is an important technical means of intelligent identification
and automatic monitoring system[1], which has important research significance. At the same time, the
automatic tracking obstacle avoidance vehicle can effectively transport industrial products to the desig-
nated place, which helps to realize the complete automation of the production line. Intelligent obstacle
avoidance vehicle is the prototype of automatic driving vehicle and one of the necessary foundations.
It mainly solves the problem of automatic obstacle avoidance during driving. The solution of this prob-
lem is also one of the necessary conditions for automatic driving of auxiliary vehicle. Therefore, it is
of certain significance to study and explore it. However, the current general multi axis manipulator
has a large size and is controlled by motion control card, which is expensive. Especially for general
small sorting and handling application scenarios, the existing general manipulator is too conservative
and bulky[2], which is not conducive to small enterprises to reduce economic costs. The combination
of manipulator and intelligent obstacle avoidance car is only in the link of experiment. Therefore, this
paper takes Arduino development board as the core controller, combined with the hardware design
and program call of ultrasonic sensor, motor and steering gear, and designs a light manipulator control
system with image recognition function to realize an automatic traveling car that can automatically
recognize and grasp objects and has obstacle avoidance function.

2 Concept Design

The task is to design a smart vehicle which should be able to loading and unloading designated objects,
carrying loads, tracking paths, and avoiding obstacles according to the map in Figure 1.

Figure 1: Playground map

The basic task requires us to pick up orange and eraser, addition points will be given if we pick up

Page 3 of 37

Intelligent Logistics Car Based on PID Control

a bottle of water 600 ml and a pen. Clearly, different objects have different shape, size and weight.
To complete all tasks, we are supposed to design a compatible loading device. For example, we might
design a kind of manipulator that it can not only grasp large weight, but also close the claw angle very
small. What’s more, the speed of the intelligent car should not be too slow, because time is also a very
important assessment requirement.

2.1 Intelligent Car System

This design selects Arduino microprocessor as the main control chip. It is a widely used electronic
chip. Its development language is C language, which has the advantage of simple use [3]. The main
feature of Arduino is the functional setting of its parameters. It reduces the threshold of development
to a great extent, so users do not need to understand its structure from the bottom[4]. In addition,
it can also be simply connected with various sensors and electronic components, which is convenient
for development and function expansion. In this design, the smart car is equipped with ultrasonic
sensor and steering gear as the core components of the obstacle avoidance module. It collects the
corresponding information of the road conditions of the car under the control of Arduino, and feeds back
the detected information to Arduino for processing. Arduino can control the car to make corresponding
actions through calling programs, so as to realize the obstacle avoidance function. Figure 2 represent
the overall circuit diagram.

Figure 2: Overall circuit diagram

2.1.1 Power module

The power supply is an important part of the entire hardware circuit, it can provide a stable working
voltage for the system circuit to make it work normally. Lithium battery has the characteristics of stable

Page 4 of 37

Intelligent Logistics Car Based on PID Control

voltage and low price. In addition, it can also be charged and recycled. This design uses 12V lithium
battery to power the car.

2.1.2 Motor, drive module and wheel

The four motors selected in this design are CHR-GM37-520 DC hall encoder reducer motor (Figure 3).
Its advantages are all-metal gears, carbon brush permanent magnet motors, and support for forward
and reverse rotation. The input voltage range of the motor is 6-24V. It adopts AB bi-phase Hall encoder
and basic pulse 11PPR X gear reduction ratio, which meets the design conditions of intelligent car. At
the same time, the Mecanum wheel is used, and the advantage is that it can be translated (Figure 4,
5). The motor drive module chooses TB6612FNG. Compared with the traditional L298N, the efficiency
is greatly improved, and the volume is also greatly reduced (Figure 6).

Figure 3: Reducer motor and engineering drawing

Figure 4: Mecanum Wheel engineering drawing Figure 5: Mecanum Wheel

Page 5 of 37

Intelligent Logistics Car Based on PID Control

Figure 6: Schematic diagram of the motor drive module

2.1.3 Obstacle avoidance module

Today, with the continuous development of science and technology, there are more and more types of
sensors that can be applied to smart cars[5]. Among many sensors, ultrasonic sensors have become the
first choice for smart cars to achieve automatic obstacle avoidance applications. Ultrasound is a kind of
mechanical wave with relatively strong directivity, high frequency and small diffraction phenomenon,
so it is very suitable for ranging. The obstacle avoidance module used in this design is HC-SR04, which
has 4 interface terminals, namely VCC, GND, receiving terminal Echo, control terminal Trig (Figure
7). It uses IO triggering for distance measurement. By using the high-level duration of the ultrasonic
signal from the control end to the receiving end and the propagation principle of sound waves in the
air, it can calculate the distance of obstacles and complete the function of obstacle avoidance (Figure
8). In addition, the normal working voltage of HC-SR04 is around 5 V, the measurement angle is less
than or equal to 15ř, and the detection angle is larger when the distance is farther from the object.

In this design, the combination of HC-SR04 and SG90 steering gear is used to collect the position
information of obstacles. When the smart car encounters an obstacle, the signal can be reflected to the
ultrasonic sensor, and after analyzing and processing the position information of the obstacle, it is fed
back to the Arduino processing chip, so that it can call the corresponding program to take countermea-
sures. According to the reflection effect of the ultrasonic wave and the rotation of the steering gear
from 0ř to 180ř, the purpose of avoiding obstacles is realized[6].

Figure 7: HC-SR04

Page 6 of 37

Intelligent Logistics Car Based on PID Control

Figure 8: Ultrasonic Timing Diagram

2.1.4 Infrared tracking module

An 8-way anti-interference grayscale sensor is selected. Compared with the traditional sensor, this one
can filter the external light source, and there is no need to re-adjust in different light environments. At
the same time, the sensitivity adjustment function of the traditional sensor is retained, and the 3.3V
level output is added, which is compatible with more microcontrollers. Signal output increases IIC and
serial communication, and one bus can mount more modules (Figure 9, 10).

Figure 9: 8-way grayscale sensor engineering drawing

Figure 10: 8-way grayscale sensor

Page 7 of 37

Intelligent Logistics Car Based on PID Control

2.2 Manipulator system

In the overall design stage of the manipulator, the implementable scheme is proposed according to
the use requirements. The design scheme is determined by measuring the available hardware and
processing methods and comprehensively considering the analysis methods of kinematics, dynamics
and mechanical design.

2.2.1 Design scheme of manipulator

As the skeleton part of the whole manipulator system, the manipulator frame plays a key role in in-
stalling the steering gear, placing open MV or other sensors, wiring and carrying the weight of the load
block. Reasonably designing the mechanical structure of each joint can not only make the whole system
look simple, but also better design can simplify the motion process, reduce the difficulty of the system
in the subsequent parameter adjustment process, and enhance the stability and anti-interference of the
system in the working process (Figure 11, 12).

Figure 11: 6-DOF manipulator engineering drawing

Page 8 of 37

Intelligent Logistics Car Based on PID Control

Figure 12: 6-DOF manipulator

2.2.2 Hardware circuit design

The hardware circuit of the manipulator of the intelligent logistics car is mainly divided into three
parts: motion execution unit, information processing unit and information acquisition unit. 6V DC
power supply supplies power to all units (Figure 13).

Figure 13: Hardware circuit design

Page 9 of 37

Intelligent Logistics Car Based on PID Control

▷ Motion execution unit
For how to drive the frame structure of the manipulator, after comprehensive consideration, we

choose to use the steering gear YF61 as the actuator. The steering gear YF61 is an integrated servo unit
with double bearings inside. It has the advantages of low friction loss, low noise, smooth operation,
high-precision output, simple control and easy communication with single chip microcomputer. It is
suitable for places where the angle needs to be changed or maintained. When the manipulator system
grabs and places objects, the angle of each joint is changing all the time. Using this digital steering
gear can meet the use requirements (Figure 14, 15, 16).

Figure 14: Servo engineering drawing Figure 15: Servo

Figure 16: Servo parameters

▷ Information processing unit
Arduino Mega2560 is used to send execution commands to the manipulator system. Because Ar-

duino Mega2560 is the core circuit board with USB interface, it is very convenient for serial communi-
cation with computers, and has 14 digital I / O pins, which is suitable for the system design of steering

Page 10 of 37

Intelligent Logistics Car Based on PID Control

gear, which needs a large number of IO interfaces (Figure 17).

Figure 17: Arduino Pin Diagram

▷ Information acquisition unit
In this part, our group considered three different modules, debugged them respectively, and com-

pared their advantages and disadvantages. The specific contents will be detailed in 3.24.
♢ Visual module
Color information is obtained through openMV. OpenMV is an embedded image processing system.

Its camera is a compact, low-power and low-cost circuit board. It can easily complete machine vision
applications. Through the intelligent image recognition algorithm, open MV can quickly and accurately
identify the color and position of the object and execute the corresponding instructions (Figure 18).

Figure 18: Open MV

♢ Infrared obstacle avoidance module
The detection distance of the sensor can be adjusted by potentiometer. It has the characteristics of

small interference, easy assembly and convenient use. It can be widely used in many occasions, such
as robot obstacle avoidance, obstacle avoidance car and black-and-white line tracking (Figure 19).

Page 11 of 37

Intelligent Logistics Car Based on PID Control

Figure 19: HJ-IR2

♢ Ultrasonic module
Compared with laser ranging, infrared ranging and other sensors, ultrasonic is insensitive to exter-

nal light, color and electromagnetic field, and has strong environmental adaptability. In particular, it
has great advantages in identifying transparent objects[7], especially the water bottle required to be
grabbed by the project (Figure 20).

Figure 20: DFRobot URM09

Page 12 of 37

Intelligent Logistics Car Based on PID Control

3 Manufacturing

3.1 System principle

3.1.1 Principle of obstacle avoidance

The sensor designed for obstacle avoidance is HC-SR04, which uses IO-based triggering to realize the
ranging function. During ranging, the Trig terminal will first send a pulse trigger signal of more than
10 s, and the module will cyclically send out 8 square wave pulse signals, the frequency of each pulse
signal is 40 kHz, and it can judge whether there is an object in front of the sensor by automatically
detecting whether there is an echo or not. If an echo is detected, the output signal in the Echo terminal
is a high level, and the duration of the ultrasonic wave can be known from the time it takes for the
ultrasonic wave to be sent to being received. The calculation formula is:

T =
(Rh× Vi)

2
(1)

T is the test distance;Rh is high level time;Vi is the speed of sound (340 m/s)
The application principle of HC-SR04 is that the high level should be sent by the control port first,

and its duration is 10 s or more, and then detect the high-level output at the receiving port. Once the
output signal is detected, the timer starts timing. After a period of time, if the signal in the receiv-
ing port changes from high level to low level, the value of the timer can be read. At this time, the
value recorded by the timer is the ranging time. The measured distance can be calculated from the
relationship between time, sound speed and distance.

3.1.2 Principle of tracking

We used an 8-way anti-interference grayscale sensor that returns an analog value. Each of these sensors
can output analog values for black and white, ranging from 0 to 100. To be able to combine the values
of the 8 sensors to get an offset to the black line, we use "QTRSensors" library in Arduino, through the
library we can either calibrate the robot and then read the values of the sensors which depend on the
initial values from the calibration or read the raw values of the sensors. The first case will be more
accurate. After calibration, the sensor array will return the position of the black line. It can be between
0 and 700. If the position is 350, it means the sensor array is on the center of the line, then we subtract
350 from this value to get a value in the range (-350,350), which indicates the offset to the black line
and can be used to be the error of each loop while tracking.

3.1.3 Kinematics analysis of manipulator

Robot simulation technology is of great significance in the design and research of 6-DOF manipula-
tors. The Denavit-Hartenberg model, referred to as the D-H model, is a very simple modeling method
proposed by Denavit and Hartenberg in 1955 for robotic systems. This modeling method is suitable
for robots of various shapes and has long been a standard method for modeling in robot simulation
technology.

Through the D-H model, the kinematics analysis of the manipulator can be divided into forward
kinematics analysis and inverse kinematics analysis. This article gives a general overview of this part,
and the details can be found in the relevant literature[8−13]. D-H modeling is a standard method of
modeling robot kinematics, establishing a coordinate system on each link of the manipulator. By de-
termining all the homogeneous coordinate transformations between each joint and the next joint, the
attitude relationship between the end of the manipulator and the base is calculated. The homogeneous
coordinate system uses n+1-dimensional vectors to represent n-dimensional vectors, and unifies the
rotation transformation and translation transformation into a 4×4matrix operation. The homogeneous
transformation matrix is represented as follows:

Page 13 of 37

Intelligent Logistics Car Based on PID Control

j
iT =

[j
iR

oj
i P

000 1

]
4×4

(2)

j
iR represents rotation, the right column represents translation.

There are four main parameters involved in the D-H modeling process: a is the length of the vertical
line, α is the torsion angle between two adjacent z axes, d is the distance between the adjacent common
perpendiculars of the z axis, is the joint rotation angle. The D-H parameter table of the manipulator
is shown in Figure 21 [14].

Figure 21: D-H modeling parameters of the manipulator [14]

Each row of the D-H parameter table corresponds to the homogeneous transformationmatrix of each
step. Multiplying these transformation matrices to the right can establish the coordinate relationship
between the base and the end of the manipulator as shown in the following formula. By solving the
joint variables, the control of the manipulator can be realized.

4
0T =1

0 T
2
1 T

3
2 T

4
3 T (3)

In the automatic grasping system, we actually control themanipulator to reach the specified position
when the target position is known, that is, we need to solve the value of all joint variables according to
the position information, which is to solve its inverse kinematics equation.

3.2 System implementation

3.2.1 Obstacle avoidance scheme design

Through mathematical modeling, we analyze the path of the vehicle on a given track, and achieve
the set goal through the embedded program debugging of the control algorithm. There are two main
obstacle avoidance schemes in this paper.

▷ Plan A
As shown in Figure 22, from the starting line, drive in a straight line. After encountering an obstacle,

use the ranging sensor to determine the direction with a larger distance, use the differential to turn, and
then drive in a straight line; after encountering the next obstacle, repeat the above process. If the car
encounters an area without obstacles, use the distance measuring sensors on both sides to determine
the neutral position, and keep driving straight at the maximum speed.

Advantages: simple thinking, easy for overall analysis and design.
Disadvantages: The travel path is long, the time is long, and it is difficult to use the differential

turning method to accurately turn 90ř in the programming of the program algorithm.

Page 14 of 37

Intelligent Logistics Car Based on PID Control

Figure 22: Plan A

▷ Plan B
As shown in Figure 23, Starting from the starting line, the ranging sensor measures the distance

in real time, and the controller selects the widest space for steering in real time. Since the direction
changes in real time, the simulated effect graph is a curve. Drive along the curve in the figure to avoid
obstacles, and drive in a straight line after passing through the obstacle area.

Advantages: Compared with Plan A, the path is shorter, the time is less, and the program algorithm
is convenient for the overall design.

Disadvantages: The driving correction link and the procedure is complicated.

Figure 23: Plan B

In order to simplify the procedure, we choose Plan A. The scheme to solve the problem of turning
90ř is to use the Mecanum wheel. At the same time, the distance to avoid obstacles in the project is
short, so the time cost can be ignored.

3.2.2 Tracking Algorithm and PID control

The distinguishing feature of the PID controller is the ability to use the three control terms of propor-
tional, integral and derivative influence on the controller output to apply accurate and optimal control.
For each term, it corresponds to a constant, Kp, Ki and Kd, that must be adjusted so that the robot can
follow a line without oscillating or slowing down or getting off the track.

The proportional term is the error. It directly controls how to take the curves - if Kp is a small value
it will take the curves easier (it will go almost straight); if it is a large value it will take the curves
suddenly (either it will oscillate on a straight line, or it will take the curve too tight and it will leave
the track).

The integral term accumulates all errors. The integral term seeks to eliminate the residual error by
adding a control effect due to the historic cumulative value of the error. When the error is eliminated,
the integral term will cease to grow. This will result in the proportional effect diminishing as the error
decreases, but this is compensated for by the growing integral effect. In other words, it helps the robot
stop oscillating. But at a Ki that is too high, it will do the opposite.

The derivative term calculates the current error and the last error. When the robot suddenly hits a
tight curve, this value will be high and will force the robot to take the required curve. The more rapid

Page 15 of 37

Intelligent Logistics Car Based on PID Control

the change, the greater the controlling or dampening effect. At a Kd too small, this value might not
take place. At a Kd too high, it can give errors to the whole program and the robot can oscillate, run
very slowly or take very narrow curves that don’t even exist.

The whole point of this algorithm is finding the 3 constants. For our intelligent car Kp is 0.41, Ki is
0.0041and Kd is 2. We can change their values every time in the program, or put a Bluetooth module
in which we can control these values directly from the phone (Figure 24-25).

Figure 24: MIT APP Inventor 1

Figure 25: MIT APP Inventor 2

3.2.3 Manipulator system parameter adjustment

The manipulator is driven by six steering gears (numbered A, B, C, D, E, F). Among them, the F servo
controls the opening and closing of the mechanical claw, and the E servo controls the rotation of the
mechanical claw. Therefore, it is the remaining four steering gears that actually control the motion
trajectory of the manipulator. The A steering gear controls the overall rotation of the manipulator, and

Page 16 of 37

Intelligent Logistics Car Based on PID Control

the B, C, and D steering gears determine a plane and control the movement of the manipulator in this
plane. Cylindrical space coordinates can thus be used (Figure 26).

In the plane determined by the B, C, and D steering gears, according to the design situation, deter-
mine the starting point position, ending point position and motion trajectory of the gripping point of
the manipulator, as well as the number of rotation angles of each steering gear corresponding to the
starting point and the ending point. The fixed point position can be determined by actual measurement.
The determination of the steering gear angle is first obtained by theoretical calculation to obtain the
estimated value, and then adjusted by the test method.

After the fixed point work is completed, the motion trajectory of the manipulator needs to be de-
termined. Each steering gear between the start point and the end point rotates in the corresponding
direction and angle, and the angle is added and subtracted in a linear proportion. If there are certain
requirements for the trajectory, in order to improve the degree of trajectory fitting, the trajectory can
be segmented. Determine the starting point, ending point position and steering angle of each track,
and then add and subtract the angle in a linear proportion to realize the fitting of the motion track.
The more segments, the shorter the length of each segment, and the higher the fitting degree. Since
the analog servo cannot achieve complete synchronous rotation, the adjustment of the trajectory points
and the fitting of the trajectory can only be carried out by reducing the single-step rotation angle and
performing interpolation operations at the same time.

Figure 26: Six steering gears of manipulator

3.2.4 Grabbing object scheme design

▷ Color Identification Scheme
Machine vision algorithms on Open MV include finding color patches, face detection, eye tracking,

edge detection, sign tracking, and more. This system mainly uses the algorithm for finding color blocks
and the algorithm for finding color rings. The first is to find the largest color block algorithm. There are
many impurities in the background. In order to reduce the influence of impurities, a noise reduction
algorithm is also added, which can make the identification of color blocks more accurate. The threshold
of color block color adopts Lab, Lab color space, L represents brightness, positive value of A represents
red, negative value A represents green; positive value of B represents yellow, and negative value B
represents blue. Unlike RGB and CMYK color spaces, Lab colors are designed to approximate human
vision. Set the threshold structure of a color as (min L, max L, min A, max A, min B, max B). After
judging whether the color block is the specified block, Open MV and Arduino communicate through

Page 17 of 37

Intelligent Logistics Car Based on PID Control

strings to realize the grasping of the mechanical claw or the next position of the manipulator. When
the manipulator receives the signal to put down the block, it first judges whether it is the correct color
through Open MV. If it is correct, it will mark the center coordinates and send it to Arduino, and then
the Arduino will control the manipulator to place it.

Shortcoming: During the test, it was found that Open MV has a big drawback that it is extremely
sensitive to changes in light, and changes in light intensity have a huge impact on the recognition
accuracy of color blocks. Therefore, in subsequent improvements, Open CVwill be used instead of Open
MV for color patch recognition. Open CV has a wealth of algorithms commonly used in image processing
and computer vision, and supports machine learning and deep learning. The machine learning library
focuses on statistical pattern recognition and clustering, and the deep learning library focuses on vision
tasks.

In subsequent improvements, the Tensorflow model in Open CV will be used to analyze and train
the color and shape of the color blocks. Taking pictures multiple times, long-term learning can better
improve the training results. After using Open CV, it can ensure that the influence of light on the color
block recognition is greatly reduced, and the recognition will be more accurate and rapid.

▷ Ultrasonic positioning solution
The working principle of ultrasonic sensor ranging is that after the ultrasonic wave is sent out, it

propagates in the air at a speed v, and is reflected back when it reaches the surface of the detected
object, and is received by the ultrasonic transmitter. The round-trip time is t, then the distance S is
measured. The formula is:

S =
vt

2
(4)

After the ultrasonic sensor measures the distance to the object, it converts the measured data into bi-
nary signals that Arduino can recognize. After processing the binary signals, Arduino sends commands
to the steering gear, and then the steering gear drives the manipulator to move.

Shortcoming: The ranging speed is slow, resulting in a large error in each grab; if the surface of
the object to be grabbed is flat, the effect is better, and if it is an irregular surface or a curved surface,
the error is large. At the same time, the ultrasonic module has been used in the obstacle avoidance
process of the car. In order to differentiate, we decide not to use the second ultrasonic module.

▷ Infrared obstacle avoidance positioning
In order to enable the cart to stop precisely when it recognizes an object, we use high-precision

infrared obstacle avoidance modules, one in the front and the other in the middle of the cart. When
the front module recognizes an object, the car enters low-speed trajectory mode and stops when the
back one recognizes the object, passing the pinch signal to the manipulator.

Shortcoming: Initially, the car didn’t always stop immediately when it recognized an object, it
would continue to move forward a bit due to inertia.

To solve this problem, we also use encoders, and use the encoders to implement PID control on
the motors so that the car could reduce the speed to zero as quickly as possible when it receives a stop
signal.

Finally, through the analysis of the above scheme, we decide to use the infrared obstacle avoidance
module to locate the position of the object

3.2.5 Dumping device

We designed a dumping device consisting of a steering gear and a box-like device. During the process
of the intelligent car driving and grasping objects, the dumping device is in a stable state. When the
car reaches the dumping area, the steering gear will control the dumping device to lift up, so that the
object is dumped into the area.

Page 18 of 37

Intelligent Logistics Car Based on PID Control

3.3 System validation

3.3.1 Obstacle avoidance

In order to verify the obstacle avoidance performance of the car, some simple objects are used as
obstacles to specify the specific route of the car when setting up the experimental environment, so as
to verify the obstacle avoidance effect of the car.

The intelligent car detects the surrounding environment through ultrasonic sensors during driving.
The ultrasonic sensor can continuously detect whether there are obstacles in the left, front and right
directions. In case of obstacles, the car will compare the distance of obstacles according to these three
directions, so as to make driving judgment to avoid obstacles automatically. The car may encounter
obstacles in different directions, generally left, right and front. In order to take effective measures to
avoid obstacles, it is necessary to develop obstacle avoidance algorithms in these three directions to
accurately judge the position information of obstacles (Figure 27).

Figure 27: Flow chart of intelligent car obstacle avoidance

Page 19 of 37

Intelligent Logistics Car Based on PID Control

The ultrasonic sensor first detects the distance between the objects directly in front. If there is no
object more than 15 cm in front of the car, the car will continue to drive forward. If an object within 15
cm ahead is detected, the car will decelerate, and the HC-SR04 sensor will detect the distance between
the left and right obstacles at the same time. If the distance between the left obstacles is greater than
the right, the car will turn left and then move forward. If the distance between the obstacles on the
right is greater than that on the left, the car will turn right and then move forward. If there are obstacles
in front of the car, the car will repeat the above process and adjust the angle to avoid all obstacles. The
experimental results are shown in Figure 28.

Figure 28: Obstacle avoidance experiment of intelligent car

3.3.2 Tracking

In order to verify the tracking performance of the car, when setting the experimental environment, the
teacher designed curves, right angle turns and continuous turns as specific routes for the car to verify the
tracking effect of the car. When the smart car is moving forward, the infrared sensor constantly detects
the front. When white is detected, the infrared sensor judges the position of the car and returns a signal.
Arduino calls the program to control the middle position of the car to always remain on the black line
according to the feedback signal, so as to effectively drive along the black line. The experimental effect
is shown in Figure 29.

Page 20 of 37

Intelligent Logistics Car Based on PID Control

Figure 29: Tracking experiment of intelligent car

3.3.3 Grabbing

The initial position of the recorded object is the theoretical position. Adjust the intelligent car to the
initial state, and start the system for Grab Test. When the manipulator runs to the grasping position
and starts the grasping operation, record that the current grasping position of the manipulator is the
actual position. The distance between the theoretical position and the actual position is recorded as an
error. See Table 1 for details. After calculation, the average error of 10 experimental samples is 1.935
mm.

Table 1: Grab position error

Number Error(mm) Number Error(mm)
1 1.58 6 2.41
2 1.81 7 1.52
3 2.33 8 1.94
4 2.07 9 2.15
5 1.92 10 1.70

3.3.4 Unloading

The center of the unloading area is the theoretical position. Adjust the smart car to the initial state
and start the system for unloading test. When the unloading device runs to the unloading position and
starts the unloading operation, the current unloading position of the unloading device is recorded as

Page 21 of 37

Intelligent Logistics Car Based on PID Control

the actual position. The distance between the theoretical position and the actual position is recorded
as the error. See Table 2 for details. After calculation, the average error of 10 unloading experimental
samples is 2.12 mm

Table 2: Unload position error

Number Error(mm) Number Error(mm)
1 1.58 6 2.41
2 1.81 7 1.52
3 2.33 8 1.94
4 2.07 9 2.15
5 1.92 10 1.70

4 Cost Estimation

5 Conclusion

This design uses Arduino processing chip, combined with power supply, motor drive, steering gear,
ultrasonic and other modules to develop an automatic obstacle avoidance car, and verifies the feasibility
of the car’s automatic obstacle avoidance. By designing the car to run along the specified obstacle
avoidance route, the test shows that the car has good obstacle avoidance performance. At the same time,
the process of manipulator automatically grasping and placing different objects is also very successful.
However, the smart car still has some shortcomings. For example, the car can only automatically detect
the obstacles in front, left and right, but can not detect the obstacles in the height direction, or it fails
to successfully grab the mineral water bottle with open MV, resulting in having to replace it with other
sensors. If it is replaced with other algorithms, the effect may be greatly improved.

Page 22 of 37

Intelligent Logistics Car Based on PID Control

6 Nomenclature

7 Acknowledgements

Thank the school for providing us with experimental sites, experimental facilities and project funds.
Thanks to the teachers, teaching assistants and warm-hearted students who gave us help and advice
in the process of the project.

References

[1] Robin C, Lacroix S. Multi-robot target detection and tracking: taxonomy and survey[J]. Au-
tonomous Robots, 2016, 40(4): 729-760.

[2] Pereira V, Fernandes V A, Sequeira J. Low cost object sorting robotic arm using Raspberry
Pi[C]//2014 IEEE global humanitarian technology conference-South Asia Satellite (GHTC-SAS).
IEEE, 2014: 1-6.

[3] Badamasi Y A. The working principle of an Arduino[C]//2014 11th international conference on
electronics, computer and computation (ICECCO). IEEE, 2014: 1-4.

[4] Alli K S, Onibonoje M O, Oluwole A S, et al. Development of an Arduino-based obstacle avoidance
robotic system for an unmanned vehicle[J]. ARPN Journal of Engineering and Applied Sciences,
2018, 13(3): 1-7.

[5] Mu F, Liu C. Design and Research of Intelligent Logistics Robot based on STM32[J]. Recent Ad-
vances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic
Engineering), 2021, 14(1): 44-51.

[6] Jin Y, Li S, Li J, et al. Design of an intelligent active obstacle avoidance car based on rotating
ultrasonic sensors[C]//2018 IEEE 8th Annual International Conference on CYBER Technology in
Automation, Control, and Intelligent Systems (CYBER). IEEE, 2018: 753-757.

[7] Bhargava A, Kumar A. Arduino controlled robotic arm[C]//2017 International conference of Elec-
tronics, Communication and Aerospace Technology (ICECA). IEEE, 2017, 2: 376-380.

Page 23 of 37

Intelligent Logistics Car Based on PID Control

[8] Sun Lele. Simulation Analysis of 6-DOF Manipulator[J]. Journal of Physics: Conference Series,
2021, 2033(1)

[9] Li Xianglong and Quan Zikun and Liu Dongping. Design of Control System for 6-DOF Manipula-
tor[J]. IOP Conference Series: Materials Science and Engineering, 2020, 772(1) : 012041.

[10] Junhao Zhang et al. Path Planning Simulation of 6-DOF Manipulator[J]. Journal of Physics Con-
ference Series, 2020, 1574(1) : 012156.

[11] Robotics; Researchers from University of Tokyo Discuss Findings in Robotics (Working Environ-
ment Design for Effective Palletizing with a 6-DOF Manipulator)[J]. Journal of Robotics & Machine
Learning, 2016,

[12] Wei Hua Su et al. Task-Oriented Servo Loops Control of a 6-DOF Manipulator for Rescue Robot[J].
Applied Mechanics and Materials, 2013, 2667(404-404) : 663-667.

[13] Jacques A. Gangloff and Michel F. de Mathelin. Visual servoing of a 6-DOF manipulator for un-
known 3-D profile following[J]. IEEE Transactions on Robotics and Automation, 2002, 18(4) :
511-520.

[14] Kofman J, Wu X, Luu T J, et al. Teleoperation of a robot manipulator using a vision-based human-
robot interface[J]. IEEE transactions on industrial electronics, 2005, 52(5): 1206-1219.

Page 24 of 37

Intelligent Logistics Car Based on PID Control

Appendix

A All sketches in concept design

Page 25 of 37

Intelligent Logistics Car Based on PID Control

B All engineering draws with SolidWorks

Page 26 of 37

Intelligent Logistics Car Based on PID Control

Page 27 of 37

Intelligent Logistics Car Based on PID Control

C Product Design Specifications

Table 3: Product Design Specifications

Product Design Specifications
Product Identification
Name: Intelligent car
Functions: Tracking, obstacle avoidance, automatically grabbing objects
Special Features: Stable performance in obstacle avoidance, flexible manipulator,
Mecanum wheels, Automatic control
Service environment: Normal temperature and pressure, light under any conditions

D Details of Prototyped machines

Page 28 of 37

Intelligent Logistics Car Based on PID Control

Page 29 of 37

Intelligent Logistics Car Based on PID Control

Page 30 of 37

Intelligent Logistics Car Based on PID Control

E Other related works

E.1 PID motor control (One motor example)

(or)
1000

#inc lude <FlexiTimer2 . h>
1002

#def ine Right_motor_go_2 46 // AIN1
1004 #def ine Right_motor_back_2 47 // AIN2

#def ine Right_motor_pwm_2 9
1006

1008 /

1010 i n t .0 i n t .1 i n t .2 i n t .3 i n t .4 i n t .5
2 3 21 20 29 18

1012 /
#def ine ENCODER_R2_A 21

Page 31 of 37

Intelligent Logistics Car Based on PID Control

1014 #def ine ENCODER_R2_B 52

1016

i n t value_R2 ;
1018 S t r ing Target_Value ;

i n t Veloci ty_R2 , Count_R2=0;
1020

1022 f l o a t Ve loc i ty_KP =0.68 , Ve l o c i t y _K I =0, Veloci ty_KD = 7.2 , Target=0;
i n t startPWM=0;

1024 i n t PWM_Restrict=255;
void setup ()

1026 {
S e r i a l . begin (9600) ;

1028 Se r i a l . p r i n t l n (" /∗∗∗∗∗∗∗∗∗∗/ ") ;
pinMode(ENCODER_R2_A, INPUT) ;

1030 pinMode(ENCODER_R2_B , INPUT) ;

1032 pinMode(Right_motor_go_2 ,OUTPUT) ;
pinMode(Right_motor_back_2 ,OUTPUT) ;

1034 pinMode(Right_motor_pwm_2 ,OUTPUT) ;

1036

FlexiTimer2 : : s e t (5 , con t ro l) ;
1038 FlexiTimer2 : : s t a r t () ; //

a t t a ch I n t e r r up t (2 , READ_ENCODER_A_R2 , CHANGE) ;
1040 }

1042 void loop ()
{

1044 while (S e r i a l . a v a i l a b l e ()>0) //
{

1046 Target_Value=Se r i a l . r eadSt r ing () ; //
Target=Target_Value . t oF l oa t () ; // ,

1048 Se r i a l . p r i n t (" : ") ; //
Se r i a l . p r i n t l n (Target) ;

1050 }
S e r i a l . p r i n t (" : ") ;

1052 Se r i a l . p r i n t l n (Veloc i ty_R2) ;
}

1054 void con t ro l ()
{

1056

Veloc i ty_R2=Count_R2 ; //
1058 Count_R2=0; //

value_R2=Incremental_PI_A_R2 (Veloci ty_R2 , Target) ;
1060 Set_PWM_R2(value_R2) ;

1062

}
1064 void READ_ENCODER_A_R2()

{
1066 i f (d i g i t a lRead (ENCODER_R2_A) == HIGH)

{
1068 i f (d i g i t a lRead (ENCODER_R2_B) == LOW)

Count_R2++; //
1070 e l s e

Count_R2−−;

Page 32 of 37

Intelligent Logistics Car Based on PID Control

1072 }
e l s e

1074 {
i f (d ig i t a lRead (ENCODER_R2_B) == LOW)

1076 Count_R2−−; //
e l s e

1078 Count_R2++;
}

1080

}
1082 i n t Incremental_PI_A_R2 (i n t Encoder_R2 , i n t Target)

{ f l o a t Bias_R2 ;
1084 f l o a t Bia_I_R2 ;

s t a t i c f l o a t PWM_R2=0,Last_b ias_R2=0;
1086 Bias_R2=Target−Encoder_R2 ; //

Bia_I_R2 += Bias_R2 ;
1088 PWM_R2+=Veloc i ty_KP ∗Bias_R2 + Ve lo c i t y _K I ∗Bia_I_R2 + Veloci ty_KD ∗(

Bias_R2−Last_bias_R2) ; // PI
i f (PWM_R2>PWM_Restrict)PWM_R2=PWM_Restrict ;

//
1090 i f (PWM_R2<−PWM_Restrict)PWM_R2=−PWM_Restrict ;

//
Last_bias_R2=Bias_R2 ; //

1092 re turn PWM_R2; //
}

1094

1096 void Set_PWM_R2(i n t motora_R2)
{

1098 i f (motora_R2 > 0)
{

1100 d i g i t a lW r i t e (Right_motor_go_2 ,LOW) ;
d i g i t a lW r i t e (Right_motor_back_2 ,HIGH) ;

1102 analogWrite (Right_motor_pwm_2 , motora_R2+startPWM) ;
}

1104 e l s e i f (motora_R2 == 0)
{

1106 d i g i t a lW r i t e (Right_motor_go_2 ,LOW) ;
d i g i t a lW r i t e (Right_motor_back_2 ,LOW) ;

1108 }
e l s e i f (motora_R2 < 0)

1110 {
d i g i t a lW r i t e (Right_motor_go_2 ,HIGH) ;

1112 d i g i t a lW r i t e (Right_motor_back_2 ,LOW) ;
analogWrite (Right_motor_pwm_2 , −motora_R2+startPWM) ;

1114 }
}

xleftmargin

E.2 PID tracking algorithm

(or)
1000

#inc lude " l i n e . h "
1002 #inc lude " uar t . h "

#inc lude " motor . h "
1004

Page 33 of 37

Intelligent Logistics Car Based on PID Control

i n t l a s t E r r o r = 0;
1006 boolean onof f = 0;

i n t val , cnt = 0 , v [3] ;
1008

const i n t maxspeed_high = 90;
1010 const i n t minspeed_high = −90;

const i n t basespeed_high = 70;
1012

const i n t maxspeed_low = 70;
1014 const i n t basespeed_low = 50;

const i n t minspeed_low = −70;
1016

f l o a t Kp = 0;
1018 f l o a t Ki = 0;

f l o a t Kd = 0;
1020 u in t8_ t mult iP = 1;

u in t8_ t mu l t i I = 1;
1022 u in t8_ t multiD = 1;

u in t8_ t Kp f ina l ;
1024 u in t8_ t K i f i n a l ;

u in t8_ t Kd f ina l ;
1026 i n t P ;

i n t I ;
1028 i n t D;

f l o a t Pvalue ;
1030 f l o a t I va lue ;

f l o a t Dvalue ;
1032

/
1034 @brief

1036 @return i n t
/

1038 i n t ER_val ()
{

1040 unsigned i n t temp_data [2] = { 0 } ; //
i n t e r ro r = 0; //

1042

Read_Data (temp_data) ;
1044

i f (((temp_data [0] >> 1)%2) == 1) //
1046 {

i f (((temp_data [0] >> 3)%2) == 0) //
1048 {

i f (temp_data[0]%2 == 0)
1050 {

e r ro r = −temp_data [1] ;
1052 }

e l s e i f (temp_data[0]%2 == 1)
1054 {

e r ro r = temp_data [1] ;
1056 }

1058 }
}

1060 // S e r i a l . p r i n t l n (e r r o r) ;
re turn e r ro r ;

1062 }

Page 34 of 37

Intelligent Logistics Car Based on PID Control

1064 / Th i s vo id d e l im i t s each i n s t r u c t i o n .
The Arduino knows tha t f o r each i n s t r u c t i o n i t w i l l r e c e i v e 2 b y t e s .

1066

/
1068 void BT_set ()

{
1070 BT_SERIAL . begin (9600) ;

}
1072

void va luesread () {
1074 va l = BT_SERIAL . read () ;

cnt++;
1076 v [cnt] = va l ;

i f (cnt == 2)
1078 cnt = 0;

}
1080

/ In t h i s vo id the the 2 read va l u e s are a s s i gn ed . /
1082 void proces s ing () {

i n t a = v [1] ;
1084 i f (a == 1) {

Kp = v [2] ;
1086 }

i f (a == 2) {
1088 mult iP = v [2] ;

}
1090 i f (a == 3) {

Ki = v [2] ;
1092 }

i f (a == 4) {
1094 mul t i I = v [2] ;

}
1096 i f (a == 5) {

Kd = v [2] ;
1098 }

i f (a == 6) {
1100 multiD = v [2] ;

}
1102 i f (a == 7) {

onof f = v [2] ;
1104 }

S e r i a l . p r i n t (" Kp : ") ;
1106 Se r i a l . p r i n t l n (Kp) ;

}
1108

void r obo t _ con t r o l _ f a s t () {
1110 //0~7000

//3500 ~ −3500
1112 // 0 ,

i n t e r ro r = ER_val () ;
1114 PID_ fas t (e r ro r) ;

}
1116

/
1118 @brief PID

1120 @param e r r o r

Page 35 of 37

Intelligent Logistics Car Based on PID Control

/
1122 void P ID_ fas t (i n t e r ro r) {

i n t P = er ro r ;
1124 i n t I = I + er ro r ;

i n t D = er ro r − l a s t E r r o r ;
1126 l a s t E r r o r = er ro r ;

// Pva lue = (Kp/pow(10 , mult iP)) P ;
1128 // I v a l u e = (Ki /pow(10 , mu l t i I)) I ;

// Dvalue = (Kd/pow(10 , multiD)) D;
1130 Pvalue = 0.41∗P ;

I va lue = 0.0041∗ I ;
1132 Dvalue = 2∗D;

// e r r o r e r r o r
1134 f l o a t motorspeed = Pvalue + Iva lue + Dvalue ;

// p idp id
1136 i n t motorspeedL = basespeed_high + motorspeed ;

i n t motorspeedR = basespeed_high − motorspeed ;
1138 //−100 ~ 150

motorspeedL = cons t r a in (motorspeedL , minspeed_high , maxspeed_high) ;
1140 motorspeedR = cons t r a in (motorspeedR , minspeed_high , maxspeed_high) ;

1142 // S e r i a l . p r i n t (motorspeedL) ; S e r i a l . p r i n t (" ") ; S e r i a l . p r i n t l n (
motorspeedR) ;

//
1144 speedcont ro l (motorspeedL , motorspeedR) ;

}
1146

void robot_cont ro l_ s low () {
1148 //0~7000

//3500 ~ −3500
1150 // 0 ,

i n t e r ro r = ER_val () ;
1152 PID_slow (e r ro r) ;

}
1154

/
1156 @brief PID

1158 @param e r r o r
/

1160 void PID_slow (i n t e r ro r) {
i n t P = er ro r ;

1162 i n t I = I + er ro r ;
i n t D = er ro r − l a s t E r r o r ;

1164 l a s t E r r o r = er ro r ;
// Pva lue = (Kp/pow(10 , mult iP)) P ;

1166 // I v a l u e = (Ki /pow(10 , mu l t i I)) I ;
// Dvalue = (Kd/pow(10 , multiD)) D;

1168 Pvalue = 0.05∗P ;
I va lue = 0.005∗ I ;

1170 Dvalue = 0.25∗D;
// e r r o r e r r o r

1172 f l o a t motorspeed = Pvalue + Iva lue + Dvalue ;
// p idp id

1174 i n t motorspeedL = basespeed_low + motorspeed ;
i n t motorspeedR = basespeed_low − motorspeed ;

1176 //−100 ~ 150
motorspeedL = cons t r a in (motorspeedL , minspeed_low , maxspeed_low) ;

Page 36 of 37

Intelligent Logistics Car Based on PID Control

1178 motorspeedR = cons t r a in (motorspeedR , minspeed_low , maxspeed_low) ;

1180 // S e r i a l . p r i n t (motorspeedL) ; S e r i a l . p r i n t (" ") ; S e r i a l . p r i n t l n (
motorspeedR) ;

//
1182 speedcont ro l (motorspeedL , motorspeedR) ;

}
1184

void speedcont ro l (i n t motL , i n t motR) {
1186 i f (motL >= 0 && motR >= 0) {

run_pid (motL , motR) ;
1188 }

//0
1190 i f (motL < 0 && motR >= 0) {

// dreapta
1192 //

motL = 0 − motL ;
1194 s p i n _ l e f t _ p i d (motL , motR) ;

1196 }
//0

1198 i f (motL >= 0 && motR < 0) {
// s tanga

1200 //
motR = 0 − motR ;

1202 sp i n_ r i gh t _p id (motL , motR) ;
}

1204 }

1206 /
@brie f PID

1208 /
void BT_adj ()

1210 {
i f (BT_SERIAL . a v a i l a b l e ()) {

1212 while (BT_SERIAL . a v a i l a b l e () == 0) ;
va luesread () ;

1214 proces s ing () ;
}

1216 i f (onof f == 1) {
r obo t _ con t r o l _ f a s t () ;

1218 // r obo t _ c on t r o l _ s l ow () ;
// S e r i a l . p r i n t (" s t op ") ;

1220 }
i f (onof f == 0) {

1222 brake_encoder (1) ;
}

1224 }

xleftmargin

Page 37 of 37

