
Closed-loop Control for a Subway Seat Cleaning
Robot Manipulator

Boshu Lei
School of Engineering and

Applied Science
University of Pennsylvania

Philadelphia, Pennsylvania 19104
Email: leiboshu@seas.upenn.edu

Tianyou Wang
School of Engineering and

Applied Science
University of Pennsylvania

Philadelphia, Pennsylvania 19104
Email: wty518@seas.upenn.edu

Tianyi Chen
School of Engineering and

Applied Science
University of Pennsylvania

Philadelphia, Pennsylvania 19104
Email: tychen32@seas.upenn.edu

Abstract—Seat cleaning requires adequate contact forces ap-
plied to the curved surfaces to wipe out stains and dirt. At the
same time, high efficiency is preferred for task completion to
generate effective profit margins, resulting in fast end-effector
motions. To accomplish such tasks, we employed an extended
Cartesian impedance control algorithm, which includes geomet-
rical constraints and enables explicit force tracking in a hybrid
manner. The adopted unified framework features compliant
behavior in the (free) motion task directions and explicit force
tracking in the constrained directions. We tested our algorithm
in both MATLAB and Gazebo simulations to show that our
implementation can effectively control robot arms with different
configurations to apply desired contact forces on a variety of
surfaces while maintaining accurate and fast motions.

I. INTRODUCTION

Subway systems, vital components of urban transportation,
seamlessly connect millions of commuters daily. However,
the persistent challenge of maintaining cleanliness within
these networks extends beyond mere aesthetics, impacting
passenger experience and public health. Nevertheless, the
current solution, mostly manual cleaning efforts, prove to be
labor-intensive and temporally challenging, exacerbated by the
constant influx of dirt, debris, and germs.

This paper delves into the integration of robotic technologies
as a transformative solution to address the cleanliness chal-
lenges inherent in subway systems. Specifically focusing on
seat cleaning, a critical aspect, where conventional methods,
such as classical impedance control [1] and hybrid motion-
force control [2], encounter challenges including failure of
providing accurate force and motion control simultaneously
and high-impact corrective actions after the loss of contact
with the surface due to the motion tracking error, we explore
an innovative solution [3]. Our adopted approach involves the
implementation of an extended Cartesian impedance control
algorithm, which includes geometrical constraints and enables
explicit force tracking in a hybrid manner. Such a unified
framework features compliant behavior in the (free) motion
task directions and explicit force tracking in the constrained
directions.

This innovative algorithm ensures precise and expeditious
motions, effectively controlling robot arms with diverse config-
urations to apply desired contact forces on various surfaces. By

overcoming the shortcomings of conventional methodologies,
our research represents a paradigm shift in the maintenance
of subway cleanliness. We meticulously tested our algorithm
in both MATLAB and Gazebo simulations. The outcomes of
our simulations showcase the transformative potential of our
proposed robotic solution, offering a glimpse into a future
where subway environments consistently exude cleanliness,
inviting passengers into a pristine and liberating commuting
experience, free from the constraints of manual labor.

II. METHOD

A. Fundamentals

The dynamics of the manipulator can be expressed as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext (1)

where τ is the joint torque input for the system. The
compliant end-effector behavior can be achieved using the
classical impedance control

τimp = J(q)TFimp + g(q) (2)

B. Control Design

To decouple the control actions in the motion and force
directions. Here the stacked Jacobian matrix J̄(q) is given byΦ̇

ẋ
v

 =

(
JΦ̇(q)
Jẋ(q)

)
︸ ︷︷ ︸

J̄(q)

q̇ (3)

where Φ̇ is the normal direction of the contact surface and
ẋ is the tangential direction. The constraints for forces are
defined in Φ̇ direction while the constraints for the motion of
the end effector are defined in ẋ direction.

To achieve the hybrid force-motion control, the control
command is

τ = g + J̄(q)T
(
F Φ̇

ctrl
F ẋ

ctrl

)
(4)

containing gravity compensation. The control force in the
motion directions can be generated with PD control as



Fctrl = Mxẍdes + Cxẋdes −Kxx̃−Dxẋ (5)

xdes describes the desired task-space coordinates for the
unconstrained space at the end effector. Mx and Cx are task-
space inertia and Coriolis and centrifugal matrices in the
motion direction, respectively, which are calculated by

Mx = J−1
ẋ (q)MJ−1

ẋ (q); (6)

Cxẋdes = Jẋ(q)
−TCq̇des −MxJ̇ẋ(q)q̇des; (7)

For the calculation of F Φ̇
ctrl, the control target is

F̂ ext
Φ̇

− F des(t) = 0 (8)

where the predicted model-based force F̂ ext
Φ̇

can be derived
through the following steps:

1) In the direction of Φ̇, we have

Φ̈ = JΦ̇q̈ + J̇Φ̇q̇ = 0 (9)

2) Represent τ ext in the operational space in the dynamic
function, we have

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ − J̄(q)T
(
F ext
Φ̇

F ext
ẋ

)
(10)

3) Transform the above equation, we have

F̂ ext
Φ̇

=ΛΦ̇JΦ̇M
−1(τ − g − Cq̇) + ΛΦ̇J̇Φ̇q̇

− ΛΦ̇JΦ̇M
−1(JT

ẋ F ext
ẋ ) (11)

where

ΛΦ̇ = (JΦ̇M
−1JT

Φ̇
)−1 (12)

4) Finally, represent τ in the operational space, we have

F̂ ext
Φ̇

=ΛΦ̇JΦ̇M
−1(J̄(q)T

(
F ctrl
Φ̇

F ctrl
ẋ

)
− Cq̇)

+ ΛΦ̇J̇Φ̇q̇ − ΛΦ̇JΦ̇M
−1(JT

ẋ F ext
ẋ ) (13)

Thus, the control force in the constraint force direction can be
represented as

F ctrl
Φ̇

=+ F des(t)

− ΛΦ̇JΦ̇M
−1JT

ẋ F ctrl
ẋ

+ ΛΦ̇JΦ̇M
−1JT

ẋ F ext
ẋ

+ ΛΦ̇(JΦ̇M
−1C − J̇Φ̇)q̇ (14)

Moreover, to reduce steady-state errors, an additional PI con-
trol term is added to the control input:

FPI = −kP
(
F ext
Φ̇

− F des(t)
)
− kI

∫ (
F ext
Φ̇

− F des(t)
)
dt (15)

Fig. 1. An example of the matlab simulation environment. A three-link
robot (red, yellow and purple line) moves on the surface (blue line).

III. EXPERIMENT

In this section, we first introduce our environment setup
in part A. We test our algorithm on a simplified Matlab
environment and then move to a more complex robot arm.
Afterwards, we report the implementation details and certain
parameters for the algorithm in part B. Finally, we show both
the desired force and force measured by sensor which indicates
our algorithm can successfully apply given amount of force on
the surface.

A. Simulator Setup

1) MATLAB Simulation: We simulate our algorithm in
Matlab using a three-link robot. We choose a slope with 45◦

to apply force on. We assume the robot to be planar. For
simplicity, the length of each link is set to 1m and mass is
set to 1 kg. Since the end point should be constrained on the
surface, the constraint:

c(q) = Φ̇T

[
x
y

]
= 0 (16)

where Φ̇ is the normal direction of the surface. The first and
second order time derivative should also be zero.

ċ(q) = Φ̇TJ(q)q̇ = 0 (17)

c̈(q) = Φ̇T [J̇(q)q̇ + J(q)q̈] = 0 (18)

From system dynamic Eq. 1 and constraint Eq. 18, we can
solve for q̈ and external force N .{

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + J(q)TN

Φ̇T [J̇(q)q̇ + J(q)q̈] = 0
(19)

We use Euler method to solve numerically solve the differ-
ential equation. The time step is set to 0.001. If the end point
is above the surface due to numerical error, then the reative
force is 0.



Fig. 2. An example of the gazebo simulation environment. A triangular
surface if placed 0.8m in front of the robot arm. The length and height of the
surface is 0.5m.

2) Gazebo Simulation: In gazebo simulator, we use the 7
DoF Panda Franka arm for our task. Since the original gripper
has complex shape and may lead to multiple contact points
with the surface, we replace it with a cylinder to simply the
contact simulation. The surface is a slope of 45◦. Gazebo
contact sensor is attached to the slope to measure the force
exerted by the arm. In order to prevent the noise from extreme
stiffness, the ODE parameter soft erp is set to 1.0, kp is set
to 1e6 and min depth is set to 0.001. The simulation setup
is shown in Fig 2.

B. Implementation Details

For both the gazebo and matlab implementation, Kx and Dx

in Eq. 5 are set to 100 and 50 respectively. The proportional
and integral gain are set to 0.5 and 0.01 respectively. In
order to keep the end-effector perpendicular to the surface,
an additional angular torque is added to the output torque.
Given the desired rotation Rdes and current rotation R, we
compute the angular difference using Eq. 20.

θdiff =

[
(RTRdes −RT

desR)

2

]∨
(20)

where [·]
∨

is the mapping from a skew-symmetric matrix
to a vector. Then the additional angular torque is given by:

τang = KpJω(q)
Tθdiff (21)

C. Results

We design three trajectories for testing. The details of these
trajectories are given below:

1) Constant velocity equals 10−3m/s down the slope and
the desired force is 20 N.

2) Constant velocity equals 10−3m/s down the slope and
the desired force is 30 N.

3) Constant acceleration equals 5e−4m/s2 down the slope
and the desired force is 20 N.

The results of three trajectories in Gazebo simulator are
summarized in Fig. 4. For position tracking objective, our
controller can successfully track the desired trajectory. For

trajectory 1 and 3, the mean tracking error is 0.013 and 0.017
m respectively. For trajectory 2, we find that there is constant
lag between current position and desired position. The mean
tracking error is 0.025m.

Fig. 3. An example of sensor noise. Here we put the end effector on the
slope surface. We try to apply a constant 20N force perpendicular to the
surface. The robot remains static over the process. The blue curve is the data
read from contact sensor.

For the force objective, we find spikes on the blue curve.
We ascribe them to the sensor noise. In Fig. 3, we show
a static constant force case. Although each joint’s effort is
stable, there are spikes in the curve, indicating sensor noise.
In Fig. 4, the largest error happens in the beginning. This is
because the robot arm switches from position control mode
to torque control mode. For the contact sensor output, out
controller converges to the desired force in around 2 seconds
and oscillate near the desired force. The maximum force error
for 3 trajectories are 5, 2.8 and 4.2 N, respectively.

The results of matlab simulation is summarized in Fig. 5.
For position tracking objective, our controller can also suc-
cessfully track the desired trajectory, with maximum tracking
error of 0.013m. For the force objective, we can also find
spikes in the reactive force curve. This is due to the reason
that Euler method introduces small error and the end point
leaves the surface, resulting in 0 reactive force. The reactive
force converges to the desired force in the given time. The
final stable error is 2.72N, 2.34N and 2.98N, respectively.

IV. CONCLUSION

In conclusion, our study underscores the imperative of
addressing cleanliness challenges in subway systems. The
limitations of manual cleaning methods have prompted our ex-
ploration of robotic technologies, particularly focusing on seat
cleaning. Our proposed extended Cartesian impedance control
algorithm implementation, tested in MATLAB and Gazebo
simulations, represents a transformative solution. By ensur-
ing precise and efficient motions, this innovative approach
offers a paradigm shift in maintaining subway cleanliness.
The envisioned future holds promise for consistently pristine
subway environments, providing passengers with a liberating
commuting experience, free from the constraints of manual
labor.



Fig. 4. Gazebo simulation results. The left column is the result of trajectory 1. The middle column is the result of trajectory 2. The right column is the
result of trajectory 3. The first shows the results of our force controller. The red curve is the desired force and the blue curve is the normal returned by contact
sensor. The second row shows the position tracking results on the desired direction. The red curve is the current x position and the blue curve is the desired
end effector x position.

Fig. 5. MATLAB simulation results. The left column is the result of trajectory 1. The middle column is the result of trajectory 2. The right column is
the result of trajectory 3. The first shows the results of our force controller. The red curve is the desired force and the blue curve is the normal returned by
contact sensor. The values are negative because they reflect the forces on the surface, which are on the opposite direction to the forces exerted by the end
effector. The second row shows the position tracking results on the desired direction. The red curve is the current x position and the blue curve is the desired
end effector x position.

For future work, we would like to implement our algorithms
on specifically designed subway car cleaning robot and con-
duct experiments on actual subway seat surfaces.

ACKNOWLEDGMENT

The authors would like to thank Dr. Michael Posa, our
course instructor, for patiently answering our questions related
to project implementation, Dr. Nadia Figueroa, for guidance
in Franka robot arm related questions and theory derivation,
and Wei-cheng Huang, our senior friend, for helping us derive
certain formulae.

REFERENCES

[1] N. Hogan, “Impedance control: An approach to manipulation: Part i, part
ii, part iii,” 1985.

[2] A. Bajo and N. Simaan, “Hybrid motion/force control of multi-backbone
continuum robots,” The International journal of robotics research, vol. 35,
no. 4, pp. 422–434, 2016.

[3] M. Iskandar, C. Ott, A. Albu-Schäffer, B. Siciliano, and A. Dietrich,
“Hybrid force-impedance control for fast end-effector motions,” IEEE
Robotics and Automation Letters, 2023.


